Evolution of Higher-Order Gray Hirota Solitary Waves
نویسندگان
چکیده
منابع مشابه
Dynamics of Solitary-waves in the Higher Order Korteweg – De Vries Equation Type (I)
We find new analytic solitary-wave solutions of the higher order wave equations of Korteweg – De Vries (KdV) type (I), using the auxiliary function method. We study the dynamical properties of the solitary-waves by numerical simulations. It is shown that the solitary-waves are stable for wide ranges of the model coefficients. We study the dynamics of the two solitary-waves by using the analytic...
متن کاملSolitary Waves With Higher Order Nonlinear Dispersion and Stability of Compacton Solutions
We consider fifth order nonlinear dispersive K(m,n, p) type equations to study the effect of nonlinear dispersion. Using simple scaling arguments we show, how, instead of the conventional solitary waves like solitons, the interaction of the nonlinear dispersion with nonlinear convection generates compactons the compact solitary waves free of exponential tails. This interaction also generates ma...
متن کاملHigher order corrections for shallow-water solitary waves: elementary derivation and experiments
We present an elementary method to obtain the equations of the shallow-water solitary waves in different orders of approximation. The first two of these equations are solved to get the shapes and propagation velocities of the corresponding solitary waves. The first order equation is shown to be equivalent to the Korteweg−de Vries (KdV) equation, while the second order equation is solved numeric...
متن کاملHigh-Order Interaction of Solitary Waves on Shallow Water
The interaction of solitary waves on shallow water is examined to fourth order. At first order the interaction is governed by the Korteweg–de Vries (KdV) equation, and it is shown that the unidirectional assumption, of right-moving waves only, is incompatible with mass conservation at third order. To resolve this, a mass conserving system of KdV equations, involving both rightand left-moving wa...
متن کاملIntegrals of Nonlinear Equations of Evolution and Solitary Waves *
In Section 1 we present a general principle for associating nonlinear equations of evolutions with linear operators so that the eigenvalues of the linear operator are integrals of the nonlinear equation. A striking instance of such a procedure is the discovery by Gardner, Miura and Kruskal that the eigenvalues of the Schrodinger operator are integrals of the Korteweg-de Vries equation. In Secti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studies in Applied Mathematics
سال: 2008
ISSN: 0022-2526,1467-9590
DOI: 10.1111/j.1467-9590.2008.00407.x